81+b^2=324

Simple and best practice solution for 81+b^2=324 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 81+b^2=324 equation:



81+b^2=324
We move all terms to the left:
81+b^2-(324)=0
We add all the numbers together, and all the variables
b^2-243=0
a = 1; b = 0; c = -243;
Δ = b2-4ac
Δ = 02-4·1·(-243)
Δ = 972
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{972}=\sqrt{324*3}=\sqrt{324}*\sqrt{3}=18\sqrt{3}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{3}}{2*1}=\frac{0-18\sqrt{3}}{2} =-\frac{18\sqrt{3}}{2} =-9\sqrt{3} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{3}}{2*1}=\frac{0+18\sqrt{3}}{2} =\frac{18\sqrt{3}}{2} =9\sqrt{3} $

See similar equations:

| 16x+18=3x-12 | | 81+b^2=256 | | -4(x+5)+3x+-1=-13 | | x2-36=28 | | (x+6)/5=13 | | 2x+x=14+x | | 1/4x-4=3-1/3x | | 4(4x+-4)+x+4=-46 | | 3/2t=−18 | | 1/4x-4=3-x1/3 | | (9x-8)(4x+3)=0 | | 20+x3=27 | | 42+15+.25x=45+.35x | | x9=153 | | y9=153 | | 253=-5(6v-5) | | 14x+26=90 | | x2+10=11 | | 2s+18=16-4(s+7) | | (x+6/5)=13 | | a^2+16=100 | | 3(c+2)=-5-2(c-3) | | 7(x+1)-5x=4+2x+3 | | 16+b^2=100 | | 5(m+2)-6+3m=3(3m+3)-m | | 5x-28=3x+20 | | -4d+11=-53 | | y+2.5=5.43 | | {z-1}{3}=6 | | 1/4χ²-x-15=0 | | 10-(4-4n)+18n=-6+18(n+1) | | 2x-8+8x=12 |

Equations solver categories